Algorithmic Search for Extremal Graphs of Girth At Least Five

نویسندگان

  • David K. Garnick
  • Harris Kwong
  • Felix Lazebnik
چکیده

Let f(v) denote the maximum number of edges in a graph of order v and of girth at least 5. In this paper, we discuss algorithms for constructing such extremal graphs. This gives constructive lower bounds of f(v) for v ≤ 200. We also provide the exact values of f(v) for v ≤ 24, and enumerate the extremal graphs for v ≤ 10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Harmonic Index and The Girth for Graphs

The harmonic index of a graph G is defined as the sum of the weights 2 d(u) + d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this work, we present the minimum and maximum values of the harmonic index for connected graphs with girth at least k (k ≥ 3), and characterize the corresponding extremal graphs. Using this result, we obtain several relations between the h...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Properties of Certain Families of 2k-Cycle-Free Graphs

Let v = v(G) and e = e(G) denote the order and size of a simple graph G, respectively. Let G = {Gi}i≥1 be a family of simple graphs of magnitude r > 1 and constant λ > 0, i.e. e(Gi) = (λ+ o(1))v(Gi), i→∞. For any such family G whose members are bipartite and of girth at least 2k + 2, and every integer t, 2 ≤ t ≤ k − 1, we construct a family G̃t of graphs of same magnitude r, of constant greater ...

متن کامل

Uniform star-factors of graphs with girth three

A star-factor of a graph G is a spanning subgraph of G such that each component of which is a star. Recently, Hartnell and Rall studied a family U of graphs satisfying the property that every star-factor of a member graph has the same number of edges. They determined the family U when the girth is at least five. In this paper, we investigate the family of graphs with girth three and determine a...

متن کامل

Extremal bipartite graphs with high girth

Let us denote by EX (m,n; {C4, . . . , C2t}) the family of bipartite graphs G with m and n vertices in its classes that contain no cycles of length less than or equal to 2t and have maximum size. In this paper the following question is proposed: does always such an extremal graph G contain a (2t + 2)-cycle? The answer is shown to be affirmative for t = 2, 3 or whenever m and n are large enough ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992